175 research outputs found

    IMPACT OF IONOSPHERIC HORIZONTAL ASYMMETRY ON ELECTRON DENSITY PROFILES DERIVED BY GNSS RADIO OCCULTATION

    Get PDF
    The ‘Onion-peeling' algorithm is a very common technique used to invert Radio Occultation (RO) data in the ionosphere. Because of the implicit assumption of spherical symmetry for the electron density distribution in the ionosphere, the standard Onion-peeling algorithm could give erroneous concentration values in the retrieved electron density profile. In particular, this happens when strong horizontal ionospheric electron density gradients are present, like for example in the Equatorial Ionization Anomaly (EIA) region during high solar activity periods. In this work, using simulated RO TEC data computed by means of the NeQuick2 ionospheric electron density model and ideal RO geometries, we tried to formulate and evaluate an asymmetry level indicator for quasi-horizontal radio occultation observations. This asymmetry index is based on the electron density variation that a ray may experience along its propagation path (satellite to satellite link) in a RO event. Our previous qualitative assessment based on ideal simulations of RO events shows very high correlation between our asymmetry index and Onion-peeling retrieval errors (Shaikh M.M. et al 2013): errors produced by Onion-peeling in the retrieval of NmF2 and VTEC are larger at the geographical locations where our asymmetry index indicates high asymmetry in the ionosphere. In this contribution, an analysis of the asymmetry index has been carried out for the first time using real radio occultation geometries taken from COSMIC mission. This has been done for COSMIC events for which, considering the same RO geometry, simulated Limb-TEC (LTEC) under NeQuick2 background were quite close to the real LTEC observations (providing ‘quasi' co-located vertical profiles of electron density after inversion). On the basis of the outcomes of our work, for a given geometry of a real RO event and using a suitable ionospheric model, we will try to investigate the possibility to predict ionospheric asymmetry expected for the particular RO geometry considered. We could also try to evaluate, in advance, its impact on the inverted electron density profile, providing an indication of the expected product quality, if standard Onion-peelingalgorithm will be adopted to invert the observables. Results presented in this paper are initial outcomes based on our asymmetry evaluation algorith

    Implementation of Ionospheric Asymmetry Index in TRANSMIT Prototype

    Get PDF
    Metals technology / metallurg

    Wet Refractivity tomographic reconstruction over small areas using an ad-hoc GPS receivers network

    Get PDF
    One of the most attractive scientific issues in the use of GNSS (Global Navigation Satellite System) signal from a meteorological point of view, is the retrieval of high resolution tropospheric water vapour maps. The real-time (or quasi real-time) knowledge of such distributions could be very useful for several applications, from operative meteorology to atmospheric modeling. Moreover, the exploitation of wet refractivity field reconstruction techniques can be used for atmospheric delay compensation purposes and, as a very promising activity, it could be applied for example to calibrate SAR or Interferometric-SAR (In-SAR) observations for land remote sensing. This is in fact one of the objectives of the European Space Agency project METAWAVE (Mitigation of Electromagnetic Transmission errors induced by Atmospheric Water vapour Effects), in which several techniques were investigated and results were compared to identify a strategy to remove the contribution of water vapour induced propagation delays in In-SAR products. Within this project, the tomographic reconstruction of three dimensional wet refractivity fields on a small atmospheric volume (16km x 20 km x 10 km height, from 2 km to 4 km horizontal resolution and 1 km vertical resolution), was performed considering real tropospheric delays observations acquired by a GNSS network (9 dual frequency GPS receivers) deployed over Como area (Italy), during 12–18 October, 2008. Acquired L1 and L2 carrier phase observations have been processed in terms of hourly averaged Zenith Wet Delays. These vertical informations have been mapped along the correspondent line of sights (by up-sampling at 30 second sample times the 15 minutes GPS satellites positions obtained from IGS files) and inverted using a tomographic procedure. The used algorithm performs a first reconstruction (namely, the tomographic pre-processing) based on generalized inversion mechanisms, in order to define a low resolution first guess for the following step. This second step inverts GPS observables using a more refined algebraic tomographic reconstruction algorithm, in order to improve both vertical and horizontal resolution. Despite limitations due to the network design, internal consistency tests prove the efficiency of the adopted tomographic approach: the rms of the difference between reconstructed and GNSS observed Zenith Wet Delays (ZWD) are in the order of 4 mm. A good agreement is also observed between our ZWDs and corresponding delays obtained by vertically integrating independent wet refractivity fields, taken by co-located meteorological analysis. Finally, during the observing period, reconstructed vertical wet refractivity profiles evolution reveals water vapour variations induced by simple cloud covering. Even if our main goal was to demonstrate the effectiveness in adopting tomographic reconstruction procedures for the evaluation of propagation delays inside water vapour fields, the actual water vapour vertical variability and its evolution with time is well reproduced, demonstrating also the effectiveness of the inferred 3D wet refractivity fields. Even if results obtained were satisfactory, limitations due to the observation geometry, to the GNSS propagation delay information extraction form observables and to the applied tomographic technique will be highlighted, in order to trace the road-map toward future improvements in this challenging field

    TRANSMIT: Training Research and Applications Network to Support the Mitigation of Ionospheric Threats

    Get PDF
    TRANSMIT is an initiative funded by the European Commission through a Marie Curie Initial Training Network (ITN). Main aim of such networks is to improve the career perspectives of researchers who are in the first five years of their research career in both public and private sectors. In particular TRANSMIT will provide a coordinated program of academic and industrial training, focused on atmospheric phenomena that can significantly impair a wide range of systems and applications that are at the core of several activities embedded in our daily life. TRANSMIT deals with the harmful effects of the ionosphere on these systems, which will become increasingly significant as we approach the next solar maximum, predicted for 2013. Main aim of the project is to develop real time integrated state of the art tools to mitigate ionospheric threats to Global Navigation Satellite Systems (GNSS) and several related applications, such as civil aviation, marine navigation and land transportation. The project will provide Europe with the next generation of researchers in this field, equipping them with skills developed through a comprehensive and coordinated training program. Theirs research projects will develop real time integrated state of the art tools to mitigate these ionospheric threats to GNSS and several applications that rely on these systems. The main threat to the reliable and safe operation of GNSS is the variable propagation conditions encountered by GNSS signals as they pass through the ionosphere. At a COST 296 MIERS (Mitigation of Ionospheric Effects on Radio Systems) workshop held at the University of Nottingham in 2008, the establishment of a sophisticated Ionospheric Perturbation Detection and Monitoring (IPDM) network (http://ipdm.nottingham.ac.uk/) was proposed by European experts and supported by the European Space Agency (ESA) as the way forward to deliver the state of the art to protect the range of essential systems vulnerable to these ionospheric threats. Through a set of carefully designed research work packages TRANSMIT will be the enabler of the IPDM network. The goal of TRANSMIT is therefore to provide a concerted training programme including taught courses, research training projects, secondments at the leading European institutions, and a set of network wide events, with summer schools, workshops and a conference, which will arm the researchers of tomorrow with the necessary skills and knowledge to set up and run the proposed service. TRANSMIT will count on an exceptional set of partners, encompassing both academia and end users, including the aerospace and satellite communications sectors, as well as GNSS system designers and service providers, major user operators and receiver manufacturers. TRANSMIT's objectives are: A. Develop new techniques to detect and monitor ionospheric threats, with the introduction of new prediction and forecasting models, mitigation tools and improved system design; B. Advance the physical modeling of the underlying processes associated with the ionospheric plasma environment and the knowledge of its influences on human activity; C. Establish a prototype of a real time system to monitor the ionosphere, capable of providing useful assistance to users, which exploits all available resources and adds value for European services and products; D. Incorporate solutions to this system that respond to all end user needs and that are applicable in all geographical regions of European interest (polar, high and mid-latitudes, equatorial region). TRANSMIT will pave the way to establish in Europe a system capable of mitigating ionospheric threats on GNSS signals in real tim
    • 

    corecore